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Abstract. In this work we present and test a RAG-based model called
RAGGAE (i.e. RAG for the General Analysis of Explanans) tested in
the context of Human Explanation of Robotic BehaviorS (HERBS).
The RAGGAE model makes use of an ontology of explanations, enrich-
ing the knowledge of state of the art general purpose Large Language
Models like Google Gemini 2.0 Flash, DeepSeek R1 and GPT-4o. The
results show that the combination of a general LLM with a symbolic,
and philosophically grounded, ontology can be a useful instrument to
improve the investigation, identification and the analysis of the types
of explanations that humans use to verbalize - and make sense of - the
behavior of robotic agents.
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1 Introduction

One of the current focuses of Explainable Artificial Intelligence (XAI), a critical
area of research, is the necessity for AI systems to make explicit how their un-
derlying processes lead to certain outputs (in particular neural and probabilistic
ones). On a more comprehensive note, a wider XAI focus is to enhance the capa-
bility of AI systems of becoming more interpretable and transparent to humans
[13]. In this context, the ability to provide comprehensible and contextually rel-
evant explanations is essential to foster trust and enabling effective interactions
between users and AI systems.

Explanations of machine-driven outputs, however, represent only one of the
many possibilities through which to analyze and understand Human-Robot In-
teraction.
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In the context of studying HERBs (Human Explanation of Robotic Behav-
iors), we reverse focus by taking into account how humans explain (i.e. ver-
balize) and make sense of the behavior of social robots. In order to do so, we
collected and analyzed human explanations of robotic behaviors, collected in so-
cial and educational settings. Through this process, we identified the need for
a systematic procedure to gather and analyze explanations, particularly to pro-
vide a structured approach to support and streamline this process. Based on
these considerations, this work first introduces a formalized ontology of expla-
nations built upon a taxonomy of explanation types derived from philosophical
theories. Then, we show how the proposed ontology - when used in a Retrieval-
Augmented-Generation (RAG) [9] mode with a current state of the art Large
Language Models (LLM) - is able to improve the classification capabilities of hu-
man explanations when compared with expert humans annotators. In particular,
the ontology categorizes explanations into distinct types, such as mechanistic,
causal, teleological, deductive-nomological and functional, offering a framework
that primarily aims at supporting the analysis of explanations provided by in-
dividuals during Human-Robot Interaction (HRI). In the following section, we
introduce different types of explanations formalized in the ontological model.
Then, we briefly describe the HERB ontology and show how it has been inte-
grated - via RAG - with GPT-4o [14], Google Gemini 2.0 Flash [6] and DeepSeek
R1 [5] LLMs. Consequently, in an experimental section, we describe the cate-
gorization results of our integrated RAGGAE model, comparing it both to the
categorization where no ontology was used, and to the categorization provided
by two expert human annotators. Discussion and conclusions end the paper.

2 Types of Explanations

The notion of “explanation” has been studied extensively in a number of disci-
plines starting from philosophy of science, to the early cybernetics to the current
approaches in explainable AI. Different types of theories have been proposed to
define what is a correct “explanation” from a scientific view point (for details in
the context of AI and Cognitive Modelling we remind to [2],[11]). Here, we briefly
recall some of the explanatory categories that have been of interest in the context
of our study. The first type is the so called Deductive-Nomological (DN) Expla-
nation. According to this view, introduced by Hempel and Oppenheim [8], there
are some strict characteristics that an explanans (i.e. literally: what explains a
certain phenomenon) has to satisfy in order to explain a given phenomenon. In
particular, the explanandum (i.e. what has to be explained) is seen as something
that needs to be logically derived, via deduction, from the explanans. While
intuitively this theory adequately addresses a normative notion of explanation,
(as it assumes that the explanans provides necessary and sufficient conditions to
understand, where understanding is equalized to predicting, the explanandum),
this sort of relationship between explanans and explanandum proves to be very
strict, focusing exclusively on the general "why" (in line with a strong reduc-
tionist view), while many explanations look good to us without satisfying such
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tight constraints, such as singular causal explanations (e.g. "the impact of my
knee on the desk caused the tipping over of the inkwell" [16]). Another type of
explanation is the so called “functional”, where explaining consists of providing
“a function that a system is believed to possess” [3]. In other words: functional
explanations explain the capacities of a system in terms of its sub-components
and capacities (e.g. one can explain that a computer is able to produce a certain
output since it is made by a certain hardware or software architecture, where
each component plays a certain function contributing to the final output). To
a certain extent, this explanation is given by how a certain system of model is
built, not by the computations performed by itself. Other explanatory theories
developed in the literature concerns the so called “teleological”, “evolutionistic”
and “mechanistic” explanations. We briefly describe them by using a classical
running example from the biological domain. Let us suppose that our aim is
to explain why chameleons change their skin color. This usually happens when
a predator is present (they assume different color configurations based on the
different predators they perceive) or potential mating partners. Now, if we are
interested in an explanation about why chameleons assume the color configura-
tion more often associated to a particular predator (e.g. birds), a possible answer
could be that “the number of bird predators in chameleons’ environment is ma-
jor in respect to other animals and thus this has determined a stronger selective
pressure”. This is a typical example of evolutionistic explanation, a type of expla-
nation that plays an important role in many evolutional theories. If we suppose,
however, that the focus of our interest is just to understand why chameleons, in
general, change their color skin we could have other types of explanation. For ex-
ample: a teleological explanation [10] (from the greek “telos”: scope). This type of
explanation assumes that, in order to explain a phenomenon F one has to point
out which is the ultimate scope that F allows one to achieve. In the example,
if someone tells us that “chameleons change their skin color to mimetise them-
selves and escape from predators” she is simply providing an explanation about
the scope of the phenomenon intended to explain. If we suppose to be interested
to the mechanisms determining why chameleons change their color the above
explanation is not sufficient. On the other hand, a satisfactory explanation (in
this respect) would be the following “the skin color change in chameleons is due
to the response of some cells contained in the animal pigments (cromatofores) to
nervous and endocrinous stimuli”. In particular, our satisfaction would probably
be derived by the fact that this kind of explanation shows the “mechanisms”
determining the phenomenon we want to understand. This kind of explanation
is called “mechanistic” [12] a kind of explanation able to shed light on the inner
componential functioning that determine the behavior of a given system. In the
example provided, the very simple mechanistic explanation was also a causal ex-
planation. These different types of explanations (and their specializations) have
been the ones in focus during our study and formalized in our ontology.
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3 The HERB Ontology

The HERB (Human Explanation of Robotic Behavior) ontology provides a first
formalization of the above introduced different types of explanations, with a par-
ticular focus on distinctions such as nomological-deductive, mechanistic, causal,
functional, evolutionistic, teleological (and their subclasses that will be intro-
duced below). The ontology (Figure 1) has been implemented in OWL using the
Protégé software 4, integrating SWRL rules 5 to enhance semantic inference and
explicitly define the concepts, relationships, and governing rules behind these
categorizations.

Fig. 1. A Taxonomy of Classes (in yellow), Object Properties (in blue) and Data Prop-
erties (in green) of the HERB Ontology.

3.1 Classes, Object Properties and Data Properties

The core Classes of the HERB ontology include Explanandum, which repre-
sents the phenomenon or behavior that requires explanation, and Explanans,
which captures the general concept of explanation regardless of its specific type,
representing the statements or concepts used to elucidate a phenomenon. The
Explanation class categorizes specific types of explanans into subclasses, includ-
ing DeductiveNomological, Mechanistic (and its subclass Causal), Evolutionistic,
Functional, Teleological (and its subclass Neutral, Rational and FolkPsychology).

4 https://protege.stanford.edu/software.php
5 https://www.w3.org/submissions/SWRL/
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In particular, as indicated before, DeductiveNomological explanations are
based on general laws or principles, explaining phenomena by logically deriv-
ing them from an explanans; Mechanistic explanations focus on the processes
and functionalities of complex systems, explaining phenomena through their sub-
components and interactions; Causal explanations, a subclass of Mechanistic ex-
planation, concentrate on cause-effect relationships between the components of
a system; Evolutionistic explanations analyze phenomena in term of change and
adaptation over time; Functional explanations that highlight a phenomenon’s
function within a broader system; Teleological explanations are goal-oriented
and they can be further divided into Neutral, which refers on general goals, and
Rational, that explain behavior in terms of goals, beliefs, and rationality. In turn,
Rational Teleological explanations have a subclass, FolkPsychology explanation,
which employ concepts from folk psychology (e.g. beliefs, desires, intentions) [4].

The ontology incorporates linguistic markers, represented by the Linguis-
ticMarker class, which identifies significant linguistic elements associated with
different types of explanations. These markers are further specialized in the Word
subclass, capturing terms that are characteristic of specific explanatory styles.
For instance, DeductiveNomologicalWord includes terms like “law” or for explana-
tions grounded in law or general principles, while MechanisticWord encompasses
terms like “mechanism” or “structure”, relevant to explanations referring to pro-
cesses or systems. Similarly, CausalWord contains terms like “cause” or “deter-
mine” EvolutionisticWord includes phrases such as “evolved for” or “selected for”,
and FunctionalWord captures terms like “function as” or “role.” For teleological
explanations, TeleologicalWord represents goal-oriented terms like “purpose” or
“objective”, while FolkPsychologyWord (subclass of Teological Words and mark-
ers) encapsulates vocabulary tied to Folk Psychology, such as “intention” or “de-
sire.” All the above mentioned linguistic markers are typically associated to (and
adopted within) the different types of explanations investigated in this work. In
our work they are essential for identifying and categorizing explanation types in
natural language processing contexts through SWRL rules (see for details [15]).

The relationships between classes and instances in the ontology are captured
through Object Properties. For example, hasExplanandum links an explanation
to the phenomenon it seeks to explain, with the inverse property isExplanan-
dumOf. The hasMarker property associates an explanation with its linguistic
markers, and its sub-properties (hasMarkerDeductiveNomological, hasMarker-
Mechanistic, hasMarkerCausal, hasMarkerEvolutionistic, hasMarkerFunctional,
hasMarkerTeleological, and hasMarkerFolkPsychology) specify markers for par-
ticular explanatory types, ensuring precision in categorization. Additionally,
hasStructure connects an explanation to its structural framework, with sub-
properties like hasNomicExpectability (further detailed with hasSubsumption,
hasReductionIntertheory, and hasElimination) and hasCausalNetwork, which de-
scribe relationships relevant to nomological-deductive and mechanistic explana-
tions respectively.

The ontology also leverages Data Properties to describe intrinsic attributes
of its entities. In fact, the element property links instances of the Word class to
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their representative textual strings, enabling precise annotation of linguistic ele-
ments. Meanwhile, explanansText and explanatoryText provide natural language
descriptions for instances of the Explanans and Explanation classes, respectively.

4 Experimental Setup

In order to acquire data consisting in verbally expressed accounts of robotic
behaviors, we recruited participants that were requested to explain the behavior
of robots in different scenarios (the different scenarios were provided by showing
videos of different robotic behaviors). Afterwards, we built RAGGAE by used the
HERB ontology as a symbolic component to extend and deepen the knowledge
of LLMs about explanations6. The results of RAGGAE were compared with
those obtaineed by the LLMs (without RAG) and with a baseline represented
by the categorization, of the same explanandum, provided by two expert human
annotators (i.e. two philosophers of science working on the epistemology of the
different types of explanations). These different steps are described below.

4.1 Participant Recruitment and Data Collection

In our study, we involved 74 participants, recruited through mailing lists, social
networks, and word of mouth. The inclusion criteria require participants to be
over 18 years old and fluent in Italian. Participation was entirely voluntary. All
provided signed informed consent.

Each participant is asked to watch a series of short videos, each lasting no
more than two minutes, depicting various robotic behaviors in social and edu-
cational settings. In these videos, the humanoid robot Pepper interacts with a
human counterpart in scenarios specifically designed to elicit explanations from
the observer. The situations are inspired Strange Stories by Happé [7] , a classic
tool used to assess Theory of Mind (ToM), and they differ in terms of com-
plexity, everyday familiarity, mentalistic content, and the nature of the robot’s
behavior. Some videos show the robot entering a half-empty room and moving
around in an apparently random way, pausing briefly in front of an object – ei-
ther a box or a plush toy – inviting different interpretive responses. Other scenes
depict more socially complex interactions, such as an encounter in a hallway
between a woman carrying a box and the robot, which may respond either by
politely yielding the way or by acting in an ambiguous, socially uncooperative
manner. In another scenario, Pepper serves as a receptionist for students looking
for internships, reacting differently depending on the appropriateness of the stu-
dent’s behavior – in one case failing to intervene in response to an inappropriate
attitude, and in another, calmly redirecting the person to a human operator.

After each video, participants are invited to describe what they saw, high-
lighting the aspects that captured their attention and, more specifically, answer-
ing questions aimed at explaining what the robot did, why it did it, and how.

6 The system is exposed at https://www.ciitlab.org/agent.html.
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These verbal explanations are then transcribed and serve as the foundational
dataset for the subsequent classification phase.

4.2 Classification Methodology

We focused our analysis on the participants’ responses to the question "Why
did it do that?", coding each of the 74 explanations according to categories
derived from the philosophy of science. The categories used were: Deductive-
Nomological, Mechanistic, Causal, Evolutionary, Functional, Neutral Teleologi-
cal, and Folk Psychology Teleological. The classification process was carried out
in three distinct phases:

1. LLM – In this phase, a language model was provided with a prompt that
required classifying the explanations of the robot’s behavior according to
the theoretical categories listed above. The prompt included definitions and
specific examples for each category. The model was asked to interpret and
assign each explanation to the predominant category, even in the presence
of long texts.

2. LLM+RAG – Here, the same prompt from Phase 1 was used, but with the
addition of knowledge derived from a file containing an ontology. This allowed
the creation of RAGGAE, a system that integrates the symbolic component
of the HERB ontology to expand and deepen the model’s understanding of
epistemological explanations.

3. Human Annotations – Two experts (philosophers of science with specific
expertise in the epistemology of explanations) independently classified each
response. When an explanation was missing, the label ExplanationMissing
was assigned. Explanations that did not fit into the predefined categories
were labeled as Other, or classified under a new category, if deemed relevant.

The classification from Phase 3 serves as the baseline for evaluating the
performance of computational models.

4.3 Baseline and Model Performance

Once the three sets of classifications were obtained —those produced by RAG-
GAE, the Large Language Model (LLM) without ontological support, and the
two human annotators — their outputs were compared using a baseline based
on the labels assigned independently by two expert annotators (Annotator1 and
Annotator2). The inclusion of two experts aimed to reduce the influence of indi-
vidual subjectivity and to enhance the reliability of the reference labels used for
evaluating the automated models. To this end, we calculated the Inter-Annotator
Agreement (IAA) [1] using Cohen’s Kappa coefficient, a statistical measure that
quantifies the level of agreement between two raters for qualitative classifications.

The construction of the baseline followed a clearly defined procedure. In-
stances where both annotators provided either generic or null responses (such
as “explanation missing”, “other”, or “unclassifiable”) were excluded from the
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analysis, as they offered no informative reference for automatic evaluation. In
cases where only one annotator provided a valid classification, the available label
was adopted as the reference. Finally, when both annotators assigned valid but
potentially different labels, both were retained for model comparison.

Based on this baseline structure, we evaluated how closely the labels assigned
by the model aligned with the annotations provided by the human experts. We
considered two metrics, a strict accuracy to evaluate how often the label assigned
by the model matches the annotations provided by both annotators, and a partial
accuracy to evaluate how often label assigned by the model matches at least one
of the two annotations provided by the annotators, using the following formulas:

Strict Accuracy =
#

{
i | Li = A

(1)
i ∧ Li = A

(2)
i

}
N

Partial Accuracy =
#
{
i | Li = A

(1)
i ∨ Li = A

(2)
i

}
N

Where:

– Li: label assigned by the model for the i-th explanation.
– A

(1)
i , A(2)

i : labels assigned by the two annotators.
– #{·}: number of cases satisfying the condition.
– N : total number of explanations.

Based on these accuracy scores, we identified the most reliable model. For
this model, confusion matrices were generated in relation to each annotator’s
classifications to further analyze classification patterns and mismatches.

The results of this analysis are reported in the following section.

5 Results

The analysis of the Inter-Annotator Agreement (IAA) shows a moderate level of
agreement between the two evaluators, with a Cohen’s Kappa coefficient of 0.25.
This value reflects some variability in the assignments, further emphasizing the
importance of a structured comparison between multiple annotations.

Using the LLMs Google Gemini 2.0 Flash, DeepSeek R1 and GPT-4o, we
computed accuracy scores under two settings: with and without the integration
of the symbolic component RAGGAE. The results, shown in Figure 2 (strict
accuracy) and Figure 3 (partial accuracy), highlight performance improvements
when the models are supported by the HERB ontology via RAGGAE.

The comparison reveals that: for Google Gemini 2.0 Flash, the integration of
RAGGAE significantly improves both strict accuracy, from 16.1% to 24.2%, and
partial accuracy, from 43.5% to 56.5%; in the case of DeepSeek R1, the model
is unable to generate any valid classifications without RAGGAE (0% for both
accuracy types), but successfully classifies when RAGGAE is applied (strict:
12.9%, partial: 37.1%); while, for GPT-4o, RAGGAE leads to an improvement
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in strict accuracy from 14.5% to 17.7%, but a decrease in partial accuracy, from
43.5% to 35.5%.

Fig. 2. Strict accuracy scores for LLMs and their RAGGAE-enhanced versions
(LLM+RAG) across the models: Google Gemini 2.0 Flash, DeepSeek R1, GPT-4o.

These results confirm that, overall, the use of RAGGAE enhances model
accuracy. Particularly, among all evaluated models, Google Gemini 2.0 Flash
with RAGGAE achieves the best overall performance and is therefore selected
as the reference model for the in-depth analysis. As an additional analysis, two
confusion matrices were generated comparing the labels produced by the top per-
forming RAGGAE model (i.e. the one with Google Gemini 2.0 Flash) with two
annotators (Figure 4 and 5). These matrices provide a detailed view of the areas
of convergence and disagreement between the automatic model and the human
evaluators. Specifically, the matrix in Figure 4 shows a fair alignment for the
TeleologicalNeutral class (8 matches) and Unclassifiable (9 instances). However,
numerous overlaps with other categories emerge, particularly among Teleolog-
icalFolkPsychology, Functional, and Mechanistic. For example, some instances
labeled as Functional by the annotator were often classified by the model as
Mechanistic and TeleologicalNeutral, suggesting a conceptual overlap. Addition-
ally, the ExplanationMissing class frequently overlaps with TeleologicalNeutral,
indicating a possible tendency of the model to assign teleological interpretations
even in the absence of an explicit explanation. The second matrix, in Figure 5,
displays a different distribution. The model shows strong agreement with the
annotator in the classification of the TeleologicalNeutral category (15 matches),
Mechanistic (13 matches), and Unclassifiable (8 matches). Nonetheless, several
misclassifications occur between Mechanistic and TeleologicalNeutral : as many
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Fig. 3. Partial accuracy scores for LLMs and their RAGGAE-enhanced versions
(LLM+RAG) across the models: Google Gemini 2.0 Flash, DeepSeek R1, GPT-4o.

as 7 instances labeled as Mechanistic were classified by the model as Teleo-
logicalFolkPsychology. This once again reflects the difficulty in distinguishing
explanations influenced by subtle linguistic nuances. It is also worth noting the
poor alignment in the ExplanationMissing category, which the model struggles
to identify correctly in both comparisons. Overall, the two matrices confirm the
findings from the IAA analysis, showing that while model performance improves
with the integration of the HERB ontology, RAGGAE still exhibits significant
ambiguity in conceptually related classes, reflecting both model limitations and
potential divergences between annotators.

6 Conclusions and Future Works

The obtained results show how the adoption a philosophically grounded ontol-
ogy of human explanations of robotic behavior (HERBs), when used in a RAG
model (RAGGAE), improves the explanatory performance of AI systems based
on human verbalization of the behavior of social robots. While the current da-
tum is of interest, even if it deserves further investigations with a larger number
of LLMs - it is worth-noticing how, for this complex task, the performance of AI
systems are still very far from being comparable to human expert annotations.
As future works we plan to better axiomatize (via knowledge specialization and
extension when needed) the current version of the ontology. This task will al-
low to improve the formal structure that can be superimposed to LLMs and, as
a consequence, its categorization accuracy. In addition, we plan to extend our
evaluation both acquiring and analyzing more verbal data and by extending the
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Fig. 4. Confusion matrix of the best RAGGAE model (Google Gemini 2.0 Flash) vs
the labels provided by Annotator1.

Fig. 5. Confusion matrix of the best RAGGAE model (Google Gemini 2.0 Flash) vs
the labels provided by Annotator2.
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number of human annotators in order to have a more robust ground truth upon
which to compare the results of RAGGAE.
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